\(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\) [749]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 408 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} \left (a^2-b^2\right ) d}-\frac {2 \left (3 b^3 (A-C)+8 a^3 C+6 a^2 b C-a b^2 (A+9 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 A b^4-5 a^4 C+a^2 b^2 (A+9 C)\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2/3*(3*b^4*(A-C)-8*a^4*C+a^2*b^2*(A+15*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b
))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/(a^2-b^2)/d/(a+b)^(1/2)-2/3*(3*b^
3*(A-C)+8*a^3*C+6*a^2*b*C-a*b^2*(A+9*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))
^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/(a^2-b^2)/d/(a+b)^(1/2)+2/3*a*(A*b^
2+C*a^2)*tan(d*x+c)/b^2/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+2/3*(3*A*b^4-5*a^4*C+a^2*b^2*(A+9*C))*tan(d*x+c)/b^
2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4176, 4165, 4090, 3917, 4089} \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{3 b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (-8 a^4 C+a^2 b^2 (A+15 C)+3 b^4 (A-C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^4 d \sqrt {a+b} \left (a^2-b^2\right )}+\frac {2 \left (-5 a^4 C+a^2 b^2 (A+9 C)+3 A b^4\right ) \tan (c+d x)}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (8 a^3 C+6 a^2 b C-a b^2 (A+9 C)+3 b^3 (A-C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{3 b^3 d \sqrt {a+b} \left (a^2-b^2\right )} \]

[In]

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(3*b^4*(A - C) - 8*a^4*C + a^2*b^2*(A + 15*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[
a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^4
*Sqrt[a + b]*(a^2 - b^2)*d) - (2*(3*b^3*(A - C) + 8*a^3*C + 6*a^2*b*C - a*b^2*(A + 9*C))*Cot[c + d*x]*Elliptic
F[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((
b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^3*Sqrt[a + b]*(a^2 - b^2)*d) + (2*a*(A*b^2 + a^2*C)*Tan[c + d*x])/(3*b^2
*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (2*(3*A*b^4 - 5*a^4*C + a^2*b^2*(A + 9*C))*Tan[c + d*x])/(3*b^2*(
a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4165

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cot[e + f*x]*((a + b*Csc[e +
 f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e
+ f*x])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 4176

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> Simp[a*(A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^
2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a^2
*C + A*b^2) - a*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \int \frac {\sec (c+d x) \left (-\frac {3}{2} b \left (A b^2+a^2 C\right )+\frac {1}{2} a \left (A b^2-2 a^2 C+3 b^2 C\right ) \sec (c+d x)+\frac {3}{2} b \left (a^2-b^2\right ) C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b^2 \left (a^2-b^2\right )} \\ & = \frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 A b^4-5 a^4 C+a^2 b^2 (A+9 C)\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {4 \int \frac {\sec (c+d x) \left (-\frac {1}{2} a b^2 \left (a^2 C-b^2 (2 A+3 C)\right )+\frac {1}{4} b \left (3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )^2} \\ & = \frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 A b^4-5 a^4 C+a^2 b^2 (A+9 C)\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (3 b^3 (A-C)+8 a^3 C+6 a^2 b C-a b^2 (A+9 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 (a-b) b^2 (a+b)^2}-\frac {\left (3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 \left (3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^4 (a+b)^{3/2} d}-\frac {2 \left (3 b^3 (A-C)+8 a^3 C+6 a^2 b C-a b^2 (A+9 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}+\frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (3 A b^4-5 a^4 C+a^2 b^2 (A+9 C)\right ) \tan (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3819\) vs. \(2(408)=816\).

Time = 30.02 (sec) , antiderivative size = 3819, normalized size of antiderivative = 9.36 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((b + a*Cos[c + d*x])^3*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*((-4*(a^2*A*b^2 + 3*A*b^4 - 8*a^4*C + 15*a^2*b^2*C
 - 3*b^4*C)*Sin[c + d*x])/(3*b^3*(-a^2 + b^2)^2) + (4*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(3*b*(-a^2 +
b^2)*(b + a*Cos[c + d*x])^2) + (8*(a^2*A*b^2*Sin[c + d*x] + A*b^4*Sin[c + d*x] - 2*a^4*C*Sin[c + d*x] + 4*a^2*
b^2*C*Sin[c + d*x]))/(3*b^2*(-a^2 + b^2)^2*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + b*Se
c[c + d*x])^(5/2)) - (4*(b + a*Cos[c + d*x])^2*((2*a^2*A)/(3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[
c + d*x]]) + (2*A*b^2)/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (10*a^2*C)/((-a^2 + b^2)
^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^4*C)/(3*b^2*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sq
rt[Sec[c + d*x]]) - (2*b^2*C)/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*a^3*A*Sqrt[Sec
[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (2*a*A*b*Sqrt[Sec[c + d*x]])/(3*(-a^2 + b^2)^2*Sqr
t[b + a*Cos[c + d*x]]) - (16*a^5*C*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (34*a
^3*C*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (6*a*b*C*Sqrt[Sec[c + d*x]])/((-a^2 +
 b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (2*a^3*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b +
 a*Cos[c + d*x]]) + (2*a*A*b*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) -
(16*a^5*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (10*a^3*C*Cos
[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (2*a*b*C*Cos[2*(c + d*x)]*Sqrt
[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c +
d*x]]*(A + C*Sec[c + d*x]^2)*(2*(a + b)*(8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 +
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a
 - b)/(a + b)] + 2*b*(a + b)*(3*b^3*(A - C) - 8*a^3*C + 6*a^2*b*C + a*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]/(1 + Co
s[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
b)/(a + b)] + (8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/
2]^2*Tan[(c + d*x)/2]))/(3*b^3*(a^2 - b^2)^2*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*(a + b*
Sec[c + d*x])^(5/2)*((-2*a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(8*a^4*C + 3*b^4*(-A
+ C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c
 + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(3*b^3*(A - C) - 8*a^3*C + 6*a^2
*b*C + a*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))
*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(a^2 - b^2)^2*(b + a*Cos[c + d
*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(8
*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/
((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(3*b^3*(A - C
) - 8*a^3*C + 6*a^2*b*C + a*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a
 + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 3*b^4*(-A + C) -
a^2*b^2*(A + 15*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(a^2 - b^2)
^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(((8*a^4*C +
3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 + ((a + b)*(8*a^4
*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[Ar
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 +
 Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (b*(a + b)*(3*b^3*(A - C) - 8*a^3*C + 6*a^2*b*C + a*b
^2*(A + 9*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c
+ d*x]/(1 + Cos[c + d*x])] + ((a + b)*(8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 + C
os[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d
*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a +
b)*(1 + Cos[c + d*x]))] + (b*(a + b)*(3*b^3*(A - C) - 8*a^3*C + 6*a^2*b*C + a*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]
/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Co
s[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])
/((a + b)*(1 + Cos[c + d*x]))] - a*(8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Cos[c + d*x]*Sec[(c + d*x)/
2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*(b + a*Cos[c + d*x])*Sec[
(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Cos[c + d*x]*(b
 + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*(a + b)*(3*b^3*(A - C) - 8*a^3*C + 6*a^2*b*C + a
*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*
Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(
8*a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])
/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan
[(c + d*x)/2]^2]))/(3*b^3*(a^2 - b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (2*(2*(a + b)*(8*
a^4*C + 3*b^4*(-A + C) - a^2*b^2*(A + 15*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(3*b^3*(A - C)
 - 8*a^3*C + 6*a^2*b*C + a*b^2*(A + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a
+ b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (8*a^4*C + 3*b^4*(-A + C) - a
^2*b^2*(A + 15*C))*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*
Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(3*b^3*(a^2 - b^2)^2*Sqrt[b +
a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(7451\) vs. \(2(378)=756\).

Time = 16.01 (sec) , antiderivative size = 7452, normalized size of antiderivative = 18.26

method result size
parts \(\text {Expression too large to display}\) \(7452\)
default \(\text {Expression too large to display}\) \(7521\)

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x
+ c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a + b*sec(c + d*x))**(5/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)), x)